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Abstract. Simulating NMR experiments may appear mysterious and even daunting for those who are new to the field. Yet, 

broken down into pieces, the process may turn out to be easier than expected. Quite to the opposite, it is in fact a powerful 

and playful means to get insights into the spin dynamics of NMR experiments. In this Tutorial Paper, we show step by step 10 

how some NMR experiments can be simulated, assuming as little prior knowledge from the reader as possible. We focus on 

the case of NMR at zero- and ultra-low field, an emerging modality of NMR in which the spin dynamics is dominated by 

spin-spin interactions rather than spin-field interactions, as is usually the case of conventional high-field NMR. We first 

show how to simulate spectra numerically. In a second step, we detail an approach to construct an eigenbasis for systems of 

spin-½ nuclei at zero-field. We then use it to interpret the numerical simulations. In this attempt to make NMR simulation 15 

approachable, the authors wish to pay a tribute to Prof. Konstantin L’vovich Ivanov, a great scientist and pedagogue who 

passed away on March 5th 2021. 

1 Introduction 

NMR spectroscopists know well the advantages of performing experiments at the highest possible magnetic field. Increasing 

magnetic field strength boosts the sensitivity thanks to higher Boltzmann nuclear polarization and higher Larmor frequency. 20 

In addition to this already convincing advantage, higher magnetic fields also imply larger chemical shift dispersion and 

therefore easier resolution of individual resonances in crowded spectra. This has motivated the use of ever-increasing 

magnetic fields. The past year has witnessed the implementation of the first spectrometers operating at no less than 28 T, 

corresponding to a 1H Larmor frequency of 1.2 GHz (Schwalbe, 2017; Thayer and Pines, 1987).  There is no doubt these 

new instruments will allow for unprecedented applications.  25 

On the fringe of these great achievements, growing interest is going to an opposite strategy, namely, zero- to ultralow-field 

NMR (ZULF), a modality of NMR experiments where the dominant interactions are spin-spin rather than spin-field 

interactions (Thayer and Pines, 1987; Weitekamp et al., 1983; Blanchard and Budker, 2016; Blanchard et al., 2021; Tayler et 

al., 2017). To realize such condition, ZULF experiments are not performed in magnets but rather in μ-metal magnetic shields 

which screen magnetic fields originating from the Earth and other surrounding sources, bringing the residual field down to 30 
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nT values. ‘Zero-field’ (ZF) usually designates the regime where the magnetic field is so low that it does no longer influence 

the outcome of the experiment while ultra-low field (ULF) designates the regime where the Zeeman interaction (spin-field) 

can be treated as a perturbation to the spin-spin interactions. Liquid-state ZULF experiment therefore result in J-spectra 

which do not feature any chemical shift information(Ledbetter et al., 2009). In the simplest form of ZULF experiments, the 

sample is thermally prepolarized in a permanent magnet (typically 2 T) (Tayler et al., 2017) and subsequently shuttled into 35 

the magnetic shields for detection at ZF or ULF. Alternatively, ZULF experiments may be coupled with hyperpolarization 

techniques (Theis et al., 2012; Butler et al., 2013b; Barskiy et al., 2019). In particular, parahydrogen induced polarization 

(PHIP) has become common as a method for enhancing ZULF signal (Theis et al., 2012; Butler et al., 2013b). Once the 

sample is prepolarized (or hyperpolarized), coherences are excited using constant magnetic field pulses rather than 

radiofrequency (RF) pulses and are usually detected using optically pumped magnetometers (OPM) rather than inductive 40 

coils. Contrary to high-field instruments, ZULF spectrometers have the advantage of being cheap and relatively easy to 

assemble (Tayler et al., 2017). They are small enough to sit on a bench and do not require the use of cryogenics (at least if 

OPMs are used for detection).  

Most people who have been introduced to the theory of high-field NMR have first encountered the vector model. This simple 

idealization of a single spin system as a vector in 3D-space is a powerful tool to build intuition on what happens during an 45 

NMR experiment. Then, in a second step, the product operator formalism is necessary to understand the outcome of 

experiments involving interacting spins. At ZULF, there is no such intuition as the vector model. The simplest ZULF 

experiment consists of detecting the coherence between the singlet S0 and triplet T0 states of a pair of J-coupled heteronuclei, 

e.g. 1H and 13C (Blanchard and Budker, 2016). Polarization oscillates back and forth from one of the heteronucleus to the 

other, producing an observable oscillating signal, whose frequency is given by the J-coupling between the two spins. The 50 

outcome of the experiment is simple – a single line at the J-coupling frequency – although it cannot be predicted by a simple 

vector model and Bloch equations. Nonetheless, it is possible to build intuition regarding ZULF experiments in several ways. 

First, when dealing with two-spin systems, one can define spin operators at ZF in analogy to that at high-field so as to 

translate some of the intuitions from high-field to ZULF (Blanchard and Budker, 2016; Butler et al., 2013b). Second, there is 

a strong analogy between the energy states of electronic spins in atoms and coupled nuclei at ZF (Butler et al., 2013a; Theis 55 

et al., 2013). The formalism of atomic physics can therefore be used to describe ZULF experiments. Finally, ZULF 

experiments can easily be numerically simulated and – as is the case for high-field NMR – simulation provides a playful 

means to understand NMR experiments (Blanchard et al., 2020; Put et al., 2021). This tutorial paper is focused on the last 

two approaches.  

We present a step-by-step procedure to numerically simulate ZULF spectra in some simple cases. The process is broken 60 

down into the following steps: 

1. Define the experimental sequence 

2. Define the spin system 

3. Compute the spin Hamiltonian 
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4. Define the initial state: compute the initial density matrix 65 

5. Propagate the density matrix under the Hamiltonians 

6. Extract expectation values from the propagation 

7. Fourier transform the expectation values to obtain a spectrum 

We assume that the reader is familiar with general concepts of NMR but not necessarily with simulation. We take particular 

care to detail the technical “tricks” which are generally omitted in research papers but are nonetheless essential to perform 70 

successful simulations. We present simulated spectra for XAn spin systems with n between 1 and 5 with several excitation 

schemes. The spectra are simulated using MATLAB live scripts which are available in the Supplementary Material. The 

code is abundantly commented and is constructed so as to follow precisely the recipe presented in this Paper. Each object 

and operation presented in this Paper can thus be related to lines in the MATLAB code, and vice versa. PDF version of the 

live scripts are available. We strongly advise the reader to read the code in parallel to the Paper. 75 

In a second step, we interpret the simulated results by performing an analytical analysis of XAn system using a theoretical 

framework coming from atomic physics. We show how to construct an eigenbasis and find the selection rules for the allowed 

transitions. 

The reader might wonder whether it makes sense to go through all the details of simulating NMR experiments from scratch 

while there are powerful simulation packages, which are freely available. SpinDynamica (Bengs and Levitt, 2018) and 80 

Spinach (Hogben et al., 2011), which run on Mathematica and MATLAB, respectively, are probably the most appropriate 

tools for simulations at ZULF and the people who have programmed these have already gone through the hurdles of making 

them efficient and versatile for us. However, it is the Authors’ opinion that performing simple simulations from scratch is the 

best way to get familiar with the quantum mechanical objects of NMR theory. Once one is confident with these objects and 

their language, one will make the best use of powerful packages such as SpinDynamica and Spinach.  85 

In writing this Paper, the Authors wish to pay a tribute to their regretted lecturer and mentor Prof. Kostantin L’vovich 

Ivanov, known as Kostya by many, who was taken by COVID-19 on March 5th 2021 (Yurkovskaya and Bodenhausen, 

2021). KS had KI as PhD co-supervisor performing research on long-lived states, parahydrogen induced polarization, and 

chemically induced dynamic nuclear polarization (CIDNP). KI’s deep understanding of underlying physics allowed his 

group to work in very different directions, for example to combine CIDNP and ZULF NMR. During his PhD in Sami 90 

Jannin’s team in Lyon, France, QS collaborated with KI on a research project. In the course of their collaboration, KI gave 

QS guidance on how to simulate experiments at ZF. A few advices turned into precious teachings for QS. Sadly, these 

teachings were brutally interrupted by KI’s death. KI’s kindness and availability to give help and advice will ever remain an 

example for QS and KS.  
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2 Theory – numerical simulation of spin dynamics 95 

2.1 Define the experimental sequence 

Most 1D NMR experiments can be broken down into three steps: 

preparation – mixing – detection 

During the preparation, some nuclear polarization is acquired by letting the sample rest in a strong magnetic field (in most 

conventional experiments). Mixing consists of bringing the system to a non-stationary state whose oscillations are recorded 100 

during detection. In common high-field NMR experiments, all the steps are performed in a strong magnet with a nearly 

constant magnetic field. Nuclear polarization is spontaneously acquired due to the high magnetic field and both the mixing 

and detection are performed through the same RF coil using Faraday induction. At ZULF, there is no nuclear polarization so 

the preparation has to be performed in different conditions. A common method is to shuttle the sample between a region of 

high-field and a region of ZULF.  105 

Figure 1 shows a typical experimental setup. A permanent magnet is used to prepolarize the sample and is connected with 

the magnetic shields by a guiding solenoid coil. This coil ensures that the sample experiences a magnetic field with constant 

direction and sufficient strength during the transfer from the region of high-field to inside the magnetic shields (i.e. the coil 

Figure 1: A. Typical experimental setup for ZULF experiments. Note that the sample is represented in two places on the same 
drawing even if there is a single sample. B. Schemes of the experimental sequences for measurements at ZF using a sudden field 
drop or an adiabatic field drop followed by a pulse of static magnetic field. 
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ensures an adiabatic transfer). Once the sample arrives in the magnetic shields at the location of detection, the Helmholtz coil 

continues to produce a magnetic field in the same direction as the solenoid and the spin system is still distributed into 110 

Zeeman populations (Blanchard and Budker, 2016; Tayler et al., 2017). All the steps detailed until here are part of the 

preparation. In practice, the guiding solenoid and the Helmoltz coil produce a magnetic field which is much weaker than the 

prepolarizing magnet. However, this will not be taken into account in the simulation: we consider that the sample spends 

enough time in the prepolarizing magnet to reach Boltzmann equilibrium and that the transfer is sufficiently fast for us to 

neglect the change in polarization during the transfer.  115 

A further step can optionally be added to the preparation which consists of ramping down the magnetic field produced by the 

Helmholtz coil to bring the spins adiabatically to ZF. We will refer to experiments which include or do not include this step 

as the adiabatic field drop and sudden field drop experiments, respectively. In the case of sudden field drop experiments, the 

mixing step simply consists of switching off the magnetic field non-adiabatically (that is, fast enough to be considered 

instantaneous with respect to the evolution of the spin system). In the case of adiabatic field drop experiments, the sample is 120 

already at ZF at the end of preparation and so populations have to be mixed by applying a magnetic field pulse, before any 

signal can be detected. This is analogous to high-field pulses except that it uses constant magnetic field rather than RF 

pulses. After the mixing, the oscillating magnetic field generated by the sample is detected by an optical magnetometer. In 

Fig. 1, the magnetometer is represented below the sample, that is, aligned along the z-axis with respect to the sample. We 

assume that the OPM is configured so as to be sensitive to magnetic field along the z-axis. During detection, a weak 125 

magnetic field may be applied, either along the z-axis or along an orthogonal axis. In the latter case, the experiment is said to 

be performed under ULF regime. In absence of applied magnetic field (and provided the residual magnetic field is properly 

zeroed at the location of the sample), the experiment is said to be performed under ZF regime.  

In summary, there are several possible combinations of experimental schemes. All of them start with prepolarizing the spins 

at high magnetic field. After the sample is transported into the magnetic shields, the field is dropped either suddenly or 130 

adiabatically, in which case a magnetic field pulse is applied. Finally, the oscillating magnetic field produced by the sample 

is detected along the z-axis, with or without a weak magnetic field applied the x-axis. In the remaining of the paper, these 

sequences presented in Figure 2 will be broken down into the following steps: 

1. Pre-polarization 

2. Transfer and coherence excitation 135 

3. Detection 

2.2 Define the spin system 

This step consists of listing the different magnetic sites of the molecule whose ZULF spectrum is to be simulated and the 

interactions which the spins are subject to. This paper is concerned with small molecules in the liquid state. As is the case for 

high-field NMR, dipolar interactions are averaged out by rapid molecular tumbling and need not to be taken into account 140 
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(except as stochastic perturbation if one intends to include relaxation effects). Therefore, only the J-coupling and the Zeeman 

interactions are considered here. 

In this Paper, we consider spin systems of the form XAn, where X is a 13C spin coupled to n equivalent 1H spins A through a 

coupling JAX. A spins are coupled together through JAA. 

2.3 Compute the spin Hamiltonian 145 

The Hamiltonian is the operator which represents the energy of the system. Information about the spin system is 

mathematically encoded in the spin Hamiltonian. We will first present how the Hamiltonian for the Zeeman interaction of a 

single spin is computed based on Pauli matrices. Then, we will present the construction of a two-spin system using the 

Kronecker product of individual spin spaces to compute the Zeeman and the J-coupling Hamiltonians. Finally, we will show 

how the procedure is extended to an arbitrary number of spins.  150 

Let us first assume that the system contains a single spin-1/2 interacting with the magnetic field B, which we assume to be 

along the z-axis. We chose to represent the spin system in the Zeeman basis 

 ℬ = {|𝛼⟩, |𝛽⟩}.            (1) 

where the superscript indicates the size of the Hilbert space. The α and β states correspond to the spin being parallel and 

antiparallel with the magnetic field, respectively. Note that the choice of the Zeeman basis is convenient for numerical 155 

simulation but it not necessary. The general state in which the spin may be found is a linear combination of these two basis 

states. 

The angular momentum of a single spin is associated with the spin angular momentum operators, which can be represented 

as a vector along each Cartesian coordinate 

𝑰 = 𝐼   𝐼   𝐼 .            (2) 160 

These operators act on the Zeeman states in certain ways, e.g. 𝐼 |𝛼⟩ = |𝛽⟩. To summarize the set of rules it is convenient to 

use matrices, with the matrix elements determined by the action of the operator on the α and β states: 𝐼 =

⟨𝑗 𝐼 𝑖⟩, where 𝑖, 𝑗 ∈ {𝛼, 𝛽}; 𝑘 ∈ {𝑥, 𝑦, 𝑧}. These matrices are proportional to Pauli matrices 𝜎 , 𝜎  and 𝜎  

𝐼 = 𝜎 =
0 1
1 0

𝐼 = 𝜎 =
0 −𝑖
𝑖 0

𝐼 = 𝜎 =
1 0
0 −1

.            (3) 

The interaction of a single spin with a magnetic field 𝑩 is given by the Zeeman Hamiltonian 165 

𝐻 = −𝛾𝑩 ∙ 𝑰 = −𝛾 𝐵 𝐼 + 𝐵 𝐼 + 𝐵 𝐼 ,         (4) 
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where 𝛾 is the gyromagnetic ratio of the spin. The dot product of the vectors of the magnetic field and of the spin angular 

momentum is expanded on the right member of (4). Note that we have omitted the reduced Planck constant ℏ in (4), which 

implies that the energy is expressed in rad.s-1 rather than in Joules. This is the case throughout this Paper. In many cases, the 

magnetic field is aligned with one of the axes. If it points along the z-axis, i.e., 𝑩 = (0 0 𝐵 ), (4) simplifies to 170 

𝐻 = −𝛾𝐵 𝐼 = 𝜔 𝐼 = +𝜔 0
0 −𝜔

,         (5) 

where 𝜔 = −𝛾𝐵  is the Larmor frequency of the spin.  

The single spin whose Hamiltonian is given by (5) lives in a Hilbert space of dimension 2. To represent a pair of spins 1/2, 

we need to use a Hilbert space with a dimension of 4. To do so, we redefine the angular momentum operators in this higher 

dimensional space. The angular momentum operators 𝐼 , 𝐼  and 𝐼  and 𝐼 , 𝐼  and 𝐼  of spin 1 and spin 2, respectively, 175 

are given by the Kronecker product of single-spin angular momentum operator and the identity operator, in the appropriate 

order. For the z-axis angular momentum operators, we have 

𝐼 =  𝐼 ⨂1 =
1 0
0 −1

⨂
1 0
0 1

=

+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

      (6) 

and 

𝐼 = 1⨂𝐼 =
1 0
0 1

⨂
1 0
0 −1

=

+1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 −1

.      (7) 180 

Similar expressions are obtained for x and y operators. They are not shown here but are available in many textbooks (Hore et 

al., 2015; Levitt, 2013). Here we have used the following convention for the Kronecker product:  

𝑎 𝑏
𝑐 𝑑

⨂
𝛼 𝛽
𝛾 𝛿

=
𝑎

𝛼 𝛽
𝛾 𝛿

𝑏
𝛼 𝛽
𝛾 𝛿

𝑐
𝛼 𝛽
𝛾 𝛿

𝑑
𝛼 𝛽
𝛾 𝛿

=

𝑎𝛼 𝑎𝛽 𝑏𝛼 𝑏𝛽
𝑎𝛾 𝑎𝛿 𝑏𝛾 𝑏𝛿
𝑐𝛼 𝑐𝛽 𝑑𝛼 𝑑𝛽
𝑐𝛾 𝑐𝛿 𝑑𝛾 𝑑𝛿

,     (8) 

The two operators defined by (6) and (7) are the same as the one given by (5), except that the world of spin 1 now contains 

spin 2, and vice versa. This representation corresponds to a basis which is the Kronecker product of the basis of the 185 

individual spins 

ℬ = ℬ ⨂ℬ = {|𝛼𝛼⟩, |𝛼𝛽⟩, |𝛽𝛼⟩, |𝛽𝛽⟩}.         (9) 

For the case where the magnetic field points along the z-axis, the total Zeeman Hamiltonian for the two spins can now be 

computed using (5) in the basis of (9) as the sum of the two Zeeman Hamiltonians:  
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𝐻 = 𝐻 , + 𝐻 , = 𝜔 𝐼 + 𝜔 𝐼 =

⎝

⎜
⎛

+𝜔 + 𝜔 0 0 0

0 +𝜔 − 𝜔 0 0

0 0 −𝜔 + 𝜔 0

0 0 0 −𝜔 − 𝜔 ⎠

⎟
⎞

,   (10) 190 

where 𝜔  and 𝜔  are the Larmor frequencies of spin 1 and 2, respectively. Note that in a Hilbert space of several spin, it is 

useful to define projections of total angular momentum operators 

𝐼 = 𝐼 + 𝐼  

𝐼 = 𝐼 + 𝐼 .            (11) 

𝐼 = 𝐼 + 𝐼  195 

At this point, the two spins are represented in a common space but they do not interact. The J-coupling Hamiltonian for the 

pair of spins is given by 

𝐻 = 2𝜋𝐽𝑰 ∙ 𝑰 = 2𝜋𝐽 𝐼 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 = 𝜋𝐽

1/2 0 0 0
0 −1/2 1 0
0 1 −1/2 0
0 0 0 1/2

,    (12) 

where J is the J-coupling between the two spins in Hz. Compared with the Zeeman Hamiltonian (see (10)), the J-coupling 

Hamiltonian has the particularity to have off-diagonal elements in the {|𝛼𝛽⟩, |𝛽𝛼⟩} subspace, which implies that the J-200 

interaction mixes the |𝛼𝛽⟩ and |𝛽𝛼⟩ states. In other words, due to the J-interaction, these two states are no longer eigenstates 

of the spin system.  

In the case of a system of n spins, the same procedure can be applied to define the angular momentum operators and the 

Hamiltonians. These operators can be represented as 2n × 2n matrices. (6) and (7) generalize to 

𝐼 =⊗ 𝑢 ,  where 𝑢 , =
1 𝑖𝑓 𝑙 ≠ 𝑘

𝐼  𝑖𝑓 𝑙 = 𝑘
,         (13) 205 

where 1 and 𝐼  are the identity operator and the z-angular momentum operator of spin k in an n-spin space and 𝑢 ,  

operators are defined in a single-spin space. The z-projection of total angular momentum operators is given by 

𝐼 = ∑ 𝐼 .            (14) 

(13) and (14) are shown for z operators but apply similarly for x and y operators. The Zeeman Hamiltonian for a system of n 

spins is given by 210 

𝐻 = − ∑ 𝛾 𝑩 ∙ 𝑰 = − ∑ 𝛾 𝐵 𝐼 + 𝐵 𝐼 + 𝐵 𝐼 .       (15) 

where 𝛾  is the gyromagnetic ratio of spin l. The J-Hamiltonian in the same space is given by 
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𝐻 = 2𝜋 ∑ 𝐽 𝑰 ∙ 𝑰 = 2𝜋 ∑ 𝐽 𝐼 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 ,      (16) 

where 𝐽  is the J-coupling between spins l and k in Hz. Because a spin is not J-coupled to itself, the sum in (16) does not 

include terms with l = k. Furthermore, to avoid counting terms twice, terms with l < k are not included either, leaving only l 215 

> k terms. 

2.4 Define the initial state: compute the initial density matrix 

The state of a spin system during an NMR experiment is described by a density operator. If |𝜓⟩ is a ket representing the state 

of the system as a linear combination of basis states (as defined in (1) and (9)), the density operator is given by 

𝜌 = |𝜓⟩⟨𝜓|.            (17) 220 

The upper bar on (17) represents the ensemble average over all identical spin systems in the sample. This averaging makes 

the density operator formalism well-suited for NMR where the experiment consists of observing a large number of identical 

spin systems at the same time, rather than a single spin system. For example, the matrix representation of the density 

operator for the α and β states of a single spin yields 

𝜌 = |𝛼⟩⟨𝛼| =
1
0

(1 0) =
1 0
0 0

𝜌 = |𝛽⟩⟨𝛽| =
0
1

(0 1) =
0 0
0 1

.         (18) 225 

To start a simulation, we need to determine the density matrix of the system at the initial point of the experiment. We assume 

that the sample has spent enough time in the prepolarizing magnet to reach thermal equilibrium, that is, the spin system 

follows Boltzmann’s distribution of states. In this case, the density matrix is given by 

𝜌 = ,            (19) 

where 𝐻, 𝑘  and 𝑇 are the Hamiltonian operator of the spin system, Boltzmann’s constant and the temperature, respectively. 230 

Operation exp( ) denotes the matrix exponentiation. Note that this operation does not consists of applying 𝑓(𝑥) = exp(𝑥) 

to each element of the matrix. It is a more complex operation, which is realized in MATLAB by the built-in function expm 

(rather than exp). 𝑍 is a normalization constant, which ensures that the density matrix has unit trace. It is given by 

𝑍 = Tr exp − .           (20) 

The prepolarizing step of the experiments that we intend to simulate occurs in a strong magnetic field (in the sense that the 235 

Zeeman interaction is largely dominating all other interactions). In this case, we can compute the thermal equilibrium taking 

only the Zeeman terms into account. For a single spin with Larmor frequency 𝜔  and gyromagnetic ratio 𝛾 in prepolarizing 

field 𝐵 , the thermal equilibrium density matrix yields 
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𝜌 =

ℏ

=

ℏ

=
0

0
= 1 + 𝑃𝐼 ,       (21) 

where 𝑃 is the polarization of the nucleus along the z-axis (for positive γ it corresponds to the population excess of the α-240 

state with respect to β-state), defined by 

𝑃 = tanh
ℏ

.            (22) 

Note that the use of ℏ in the expression of the Hamiltonian (i.e., expressing the energy in Joules) cannot be avoided here, to 

ensure consistency of units. To obtain the expression on the right-hand side of (21), we have jumped several steps of 

calculation which are all based on the definition of polarization. This expression for the density matrix is exact for a spin 245 

whose only interaction is the Zeeman interaction, which we have assumed here. 

For a n-spin system, we take the Kronecker product of density matrices of individual spins 𝜌 ,  

𝜌 = ⊗ 𝜌 , ≈ ⊗ + 𝑃 𝐼 ,         (23) 

where 1 and 𝐼  act on a single-spin Hilbert space (2x2 matrix). The right-hand side expression is approximate in the sense 

that it neglects all spin-spin interactions.  250 

In many text books(Hore et al., 2015; Levitt, 2013), one encounters simplified expressions of the density matrix. First, it is 

common to remove the identity component 

𝜌 → 𝜌 − ,            (24) 

where 𝑛 is the number of spins in the system. Because all operators commute with the identity, this does not affect the result 

of propagation. The resulting expression is simpler (𝜌 = 𝑃𝐼  for a single spin) which is convenient for calculations by 255 

hand. It may also make the numerical propagation faster and more precise. Another common simplification is to drop the 

polarization factor. For a single spin, the two combined simplifications yield 

𝜌 →  𝐼  .            (25) 

Simplifications are useful, but they should be handled with care. The polarization factor 𝑃 is different for spins with different 

gyromagnetic ratio. If it is dropped without introducing further corrections, the relative sizes of the population of spins with 260 

different gyromagnetic ratio will not be respected. In the simulations presented here, we will compute the initial density 

matrix using the transformation of (24) but not that of (25). 
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2.5 Propagate the density matrix under the Hamiltonians 

We have seen how to compute the initial density matrix and the matrix representation of the Hamiltonian. We now describe 

how the evolution of the system (represented by the density matrix) evolves along time under a given Hamiltonian. This will 265 

be used at several steps of the simulation; when the sample is brought adiabatically to ZF, during the pulse and during the 

signal measurement. 

The evolution of a quantum system along time is given by the time-dependent Schrödinger equation. Its equivalent for the 

evolution of density matrix is the Liouville-von Neumann equation. Its solution is sometimes referred to as the “sandwich 

formula” 270 

𝜌(𝑡) =  𝑈(𝑡)𝜌 𝑈 (𝑡),           (26) 

where 𝜌  is the density matrix at 𝑡 = 0 and 𝑈 is the propagation operator (or propagator) during time 𝑡 given defined as 

𝑈(𝑡) = exp −𝑖𝐻𝑡 ,           (27) 

where 𝐻 is the total Hamiltonian. The operation of (26) “takes” the spin system from 𝜌  to 𝜌(𝑡). Again, note that exp( ) 

denotes the matrix exponentiation and not element-by-element exponentiation. It is important to remark that (27) is only 275 

valid if the Hamiltonian is constant during the evolution period. The case where the Hamiltonian is time-dependent is treated 

below. Note that the propagator is a unitary operator and therefore has the convenient property that its inverse is equal to its 

complex conjugate: 𝑈 = 𝑈 , which is much faster to compute than the matrix inverse 𝑈 .  

(26) and (27) allow to know the state of the system at any time 𝑡 from the initial time 𝑡 = 0. To simulate the signal produced 

by spin system during the course of the experiment, we must calculate the time domain signal at different time points. Note 280 

that in this case the Hamiltonian remains constant during free evolution. To calculate signal at fixed time steps it is 

convenient to first calculate the propagator 𝑈(𝑑𝑡) over period 𝑑𝑡. We then apply (26) recursively to get the new density 

matrix 𝜌(𝑡 ) from the previous one 𝜌(𝑡 ) 

𝜌(𝑡 ) =  𝑈(𝑑𝑡)𝜌(𝑡 )𝑈 (𝑑𝑡),           (28) 

where 𝑡 − 𝑡 = 𝑑𝑡 . To simulate ZULF spectra, we will also encounter situations where the Hamiltonian is time 285 

dependent. First, the Hamiltonian can vary with time but be “constant by block”. This is for example the case for the sudden 

field drop; the system is under a certain Zeeman Hamiltonian in the beginning of the experiment and suddenly under the 

ZULF Hamiltonian during detection. This situation does not present particular difficulties; the evolution of the system can be 

described step by step both by (26) and (28).  

Second, the Hamiltonian can vary continuously, as in the case of the adiabatic field drop, where the intensity of the magnetic 290 

field is ramped down to zero. Such situation can be simulated by propagating the evolution of the system during time 

intervals which are sufficiently short for the Hamiltonian to be considered constant during this time interval. The propagator 

must then be computed for each time increment. The form of the equation for propagation is similar to (28) 
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𝜌(𝑡 ) =  𝑈(𝑡 → 𝑡 )𝜌(𝑡 )𝑈 (𝑡 → 𝑡 ),        (29) 

where the propagator is given by 295 

𝑈(𝑡 → 𝑡 ) = exp −𝑖𝐻(𝑡 )𝑑𝑡 ,          (30) 

where 𝐻(𝑡 ) is the Hamiltonian at time 𝑡 . Note that the choice of 𝐻(𝑡 ) rather than 𝐻(𝑡 ) in (30) is arbitrary but in the 

limit of small intervals, the choice has no consequence. 

2.6 Extract expectation values from the propagation 

The propagation procedure described above gives access to the density matrix along time. To simulate the time domain 300 

signal, we need to extract a physical quantity from the density matrix as it evolves with time. The measured physical quantity 

of a ZULF experiment is the magnetic field produced by the nuclear spins of the sample at the location of an OPM. In first 

approximation, we can consider the whole sample as a point dipole interacting with the OPM and that this total dipole is the 

sum of the dipole of the individual spin systems (Figure 2 gives a visual representation of the approximation). Whether this 

approximation is appropriate or not depends on the geometry of the experimental setup. We have chosen the z-axis as the 305 

quantization axis (defined by the detector, i.e., the OPM). Therefore, the physical quantity that we need to compute is the 

total magnetic field produced by the spins along the z-axis at the location of the vapor cell 

〈𝐵 〉 =
 

〈 〉

 
=

 

〈 〉

 
,           (31) 

where 〈�̂� 〉, 𝜇 , 𝑁, 〈�̂� 〉 and 𝑟 are the magnetic moment of the sample along the z-axis, the permeability of free space, the 

number of identical spin systems in the sample, their individual magnetic moment along the z-axis and the distance between 310 

the center of the sample and the center of the vapor cell, respectively. 

Figure 2: Comparison of the real geometry of the sample of the OPM with the approximated one. The arrows represent local 
magnetization vectors parallel to the total magnetization vector.  
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For each identical spin system, we then compute the magnetic moment as the sum of the contributions of each spin 𝑙.  

〈𝐵 〉 =
  

∑ 〈�̂� , 〉 =
 

ℏ

 
∑ 𝛾 〈𝐼 , 〉,         (32) 

where 𝜇 , , 𝛾  and 𝐼 ,  are the magnetic moment, the gyromagnetic ratio and the angular momentum along the z-axis of spin 𝑙, 

respectively. The notation 〈 〉 denotes the expectation value of a quantity. Particularly important ones are those that can be 315 

physically measured in the experiment. In the density matrix formalism that we are using, the expectation value of a physical 

quantity related to an operator 𝐴 is given by  

 

〈𝐴〉 = Tr 𝐴𝜌 ,            (33) 

where Tr{ } denotes the matrix trace, i.e. the sum of all diagonal elements of the matrix representation of the operator. Note 320 

that the expectation value of �̂� ,  (or 𝐼 , ) is proportional to the polarization level of spin l which was accounted for in (21) 

and (22). Therefore, the total magnetic moment calculated with (32) depends on the polarization of the different spin species.  

If 𝜌(𝑡) is the density matrix at time 𝑡, we obtain the signal 𝑆(𝑡) measured by the OPM by plugging (32) into (33) 

𝑆(𝑡) = 〈𝐵 〉(𝑡) =
 

ℏ

 
Tr 𝑂𝜌(𝑡) ,          (34) 

where we have defined a “detection operator” 325 

𝑂 = ∑ 𝛾 𝐼 , .            (35) 

To obtain (34), we have used the fact that taking the trace of a matrix is a linear operation and so the trace of a sum is the 

sum of the traces.  

In the case of a sample with volume 𝑉 =  100 μL of 13C-formic acid prepolarized at 2 T at 298 K, with molar mass of 46 

g/mol and density of 1.22 g/ml one finds that the amplitude of oscillating magnetic field generated by the sample at distance 330 

of 𝑟 = 1 cm is of the order of 10 pT using the above equations. This estimation does not take into account demagnetization 

effects caused by distribution of spins in space, giving the upper limit for the expected field. Experimentally measured 

magnetic fields are about 10 times smaller (Tayler et al., 2017).  

2.7 Fourier transform the expectation values to obtain a spectrum 

The time domain signal is what is measured by the ZULF NMR spectrometer. The final step of the simulation is to transform 335 

the measured signal from the time domain to the frequency domain using a discrete Fourier transform. Programming 

environments such as MATLAB or Mathematica are equipped with built-in fast Fourier transform functions. We will not 

discuss the mathematics behind this process but we will give a few practical hints. Contrary to high-field NMR, ZULF 

spectra can be obtained with real magnetic field units (rather than arbitrary units). We will show how such units can be 

obtained. 340 

https://doi.org/10.5194/mr-2022-18

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 4 November 2022
c© Author(s) 2022. CC BY 4.0 License.



14 
 

Let us call 𝑡 and 𝑆 the vectors containing the time and corresponding time domain signal values, respectively, which resulted 

from the previous steps. We call these objects vectors in reference to the way they are constructed in MATLAB’s 

environment. Let us call 𝐾 the number of elements of both vectors (which corresponds to the number of points in the time 

domain signal). For now, 𝑆 consists of a sum of oscillating signals which do not decay with time because our simulation did 

not include relaxation effects. If we perform a Fourier transform on 𝑆, we will obtain non-Lorentzian lineshapes (with 345 

distinctive sinc patterns). We must therefore artificially include relaxation by multiplying the signal with an apodization 

function, to force the signal to decay to 0. For liquid state signals, the most common choice is a monoexponential decay 

which can be expressed as: 

𝑆′ = 𝑆 exp(−𝜋𝑙 𝑡 ) = 𝑆 exp − ,          (36) 

where 𝑆 , 𝑡 , 𝑙 , 𝑇  are the kth elements of 𝑡  and 𝑆 , the line broadening in Hz and the coherence time constant in s, 350 

respectively. 𝑆′  defines the apodized signal vector 𝑆′⃗.  As show in (36), we may choose to express the apodization function 

either using the coherence time constant 𝑇  or the line broadening 𝑙 , which are related by 𝜋𝑙 = 1/𝑇  The former is the 

time constant at which the time domain signal decays while the latter is the full width at half height (FWHH) of the signals 

on the Fourier transform. In order to avoid “truncating” the decay of the time domain signal and the related spectral artefacts, 

we must fulfil the condition 𝑇 ≪ 𝑡 , where 𝑡 = max{𝑡 } is the acquisition time (or the length of the signal in the time 355 

domain). Typically, we may choose 𝑇  and 𝑡  so that  𝑡 = 5𝑇 . Table 1 summarizes the parameters which were used in 

this Paper. 

The apodization function of (36) yields Lorentzian signals as one would expect. However, without further apodization, the 

baseline of the spectra will have some distortions (Zhu et al., 1993), with the main distortion being a small offset of the 

baseline. This problem arises because the time domain signal has its first point at time 𝑡 = 0, so that the Fourier transform 360 

gives the integral of the first segment of twice larger amplitude than it should be. As proposed by Otting, this baseline offset 

can be removed by weighting the first point of the time domain signal by factor ½ (Otting et al., 1986). However, because 

the integral of the Fourier transform is proportional to the first point of the time domain signal, this apodization does not 

preserve the integral. To obtain spectra without baseline offset and preserving the integral, we propose to use an apodization 

function which weights all points by 2 expect for the first one 365 

𝑆′′ =
𝑆′  

2𝑆′  
if 𝑘 = 1

otherwise
 .           (37) 

In MATLAB programming language, the fast Fourier transform function fft() takes vector 𝑆′⃗  as input and returns the 

frequency domain vector which corresponds to the simulated spectrum. Optionally, one may add a second argument 𝐿 to fft() 

to include zero-filling in the Fourier transform. Including zero filling has the advantage of increasing the number of points 

per FWHH on the spectrum without increasing the computation time of the propagation. Due to MATLAB’s Fourier 370 
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transform convention, it is convenient to retransform the signal with fftshift() in order to obtain a Fourier transformed signal 

with 0 as the middle frequency. We then divide the the output of the MATLAB’s Fourier transform by the number of points 

𝐿 

𝑆(𝜈) = ℱ 𝑆(𝑡),            (38) 

where ℱ designated the Fourier transform. The frequency domain signal obtained after this whole procedure has units of 375 

magnetic field (e.g. pT). Changing the zero-filling 𝐿 changes the intensity of the frequency domain signal but preserves the 

integrals.  

MATLAB’s fft() functions do not generate the frequency vector associated with the Fourier transformed signal. The 

frequency vector �⃗� in Hz can be generated based on the following expression 

𝜈 = 𝑓, 𝑘 ∈ − ; − 1 ,          (39) 380 

where the sampling frequency in Hz is given by 

𝑓 = .             (40) 

The sampling frequency of the time domain signal gives the maximum frequency that can be appropriately sampled. Figure 

3 illustrates the consequence of choosing a sampling frequency which is lower than the maximum frequency. If the sampling 

Figure 3: Illustration of signal sampling and the effect of undersampling. The left panels represent a cosine oscillating at 1 Hz in 
grey sampled with various frequency f (1.3, 3.7 and 7.3 Hz). The blue dots represent the samples. In each case, the Fourier 
transform is shown on the right panels. When the sampling frequency is lower than 1 Hz, the peak cannot appear at 1 Hz and is 
therefore found at a fictitious position. 
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frequency is lower than the signal to be sampled, the Fourier transformed signal lies outside the spectral width (between 385 

−𝑓/2 and +𝑓/2). However, due to the “refolding effect” of the Fourier transform, the signal still appears on the spectrum 

but at irrelevant positions. To avoid this, one may repeat the simulation increasing the sampling frequency and keeping other 

parameters constant. If the sampling frequency is sufficient, the spectrum should not be affected. 

The choice of the parameters discussed in this section and above influences the outcome of the simulation in the same way 

as it does for the experiment. Once an NMR simulation is running, one might want to play with combination of 𝑓, 𝐾, 𝑡 , 𝑇  390 

and 𝐿 until the simulated spectra display convenient features. If one intends to simulate spectra to match experimental data, 

one might simply perform the simulation with the same 𝑓, 𝐾, 𝐿, and 𝑡  values. Table 1 summarizes the parameters which 

were used in this Paper. 

Parameter 
name 

Meaning 
Value used in 

Figure 4 

K Number of points of the time domain signal 4096 

L 
Number of points of the time domain signal including zero filling 

/ number of points of the Fourier transform 
65536 

taq Acquisition time 5 s 

f Sampling frequency or spectral width 819.200 Hz 

τd Dwell time (time between acquisition points) 1.2207 ms 

T2 Coherence’s relaxation time constant 1 s 

lb Line broadening 0.3183 Hz 

Table 1: List of parameters that were used to simulate the time domain signals and spectra in Figure 4. 

 395 

The procedure described here yields an NMR signal which is symmetric around 0. As a consequence, each signal is found 

both in the positive and negative frequencies and the integral is split into the two duplicates. Because the experimental 

procedure that we are simulating does not differentiate negative and positive frequencies, we discard the frequency domain 

signal corresponding to negative frequencies and multiply the frequency domain signal corresponding to positive frequencies 

by a factor 2. This operation corresponds to “folding” the spectrum around 𝜈 = 0 . Note that in high-field NMR, the 400 

measured signal is complex and is therefore not split into a positive and a negative half.  

Whether the time domain signal which results from the simulation is real or complex, the Fourier transform yields a complex 

frequency domain signal. To get a spectrum consisting of a signal intensity as a function of the frequency, we must use the 

real part the frequency domain signal. Depending on the experiment that we are simulating, we might find that some or all 

spectral components of the frequency domain signal are not in phased. To compensate for this, one might apply a phase 405 
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correction by multiplying each point of the frequency domain signal by a complex constant exp 𝑖𝜙 where φ is the phase 

correction before taking its real part 

𝐼 (𝜈) = Re{𝐼 (𝜈) exp 𝑖𝜙},            (41) 

where 𝐼𝑟(𝜈) and 𝐼𝑐(𝜈) are the real and complex frequency domain signals, respectively.  

In summary, the Fourier transform procedure that we have described has the following steps: 410 

1. Apply a monoexponential apodization window to the time domain signal so that it decays to 0 (see (35)) 

2. Apply the apodization described by (36) to avoid baseline artefacts on the frequency domain signal 

3. Obtain the complex frequency domain signal by Fourier transforming the time domain signal using a fast Fourier 

transform algorithm 

4. Generate the corresponding frequency axis using (39) and (40) 415 

5. Remove the negative frequencies from both the frequency axis and the frequency domain signal and multiply the 

frequency domain signal by 2 to account for the partition of the signal integral between positive and negative 

frequencies  

6. Take the real part of the signal 

2.8 Comparison with high-field NMR 420 

We conclude this theory section by listing the main differences between high-field and ZULF NMR, which are summarized 

in Table 2. As is the case for the rest of the paper, our description is limited to small molecules containing spin-1/2 in the 

liquid state.  

At high magnetic field, the Zeeman interaction dominates the dynamics and the J-coupling and the chemical shift only 

represent small perturbations. At ZULF, the J-coupling dominates while the Zeeman interaction is a perturbation and the 425 

chemical shift plays no role. In Figure 1 and in the simulations presented in this paper, we have assumed that the detector 

was position below the sample (along the z-axis in our axis convention) and that it was sensitive to magnetic field along the 

z-axis. Although this choice is typical, it is not the only possibility. In common high-field experiments, the oscillating signal 

emitted by the spins is recorded perpendicular to the static magnetic field. Detection at ZULF is performed with 

magnetometers, which are sensitive to the total magnetic field produced by the sample. The operators corresponding to this 430 

observable is the sum of the magnetic moment of the spins along the quantization axis. In typical experiments, a single 

detector is used, which results in real signal. Note that using several detectors placed adequately, an imaginary ZULF signal 

could be obtained. High-field NMR uses Faraday induction in pick-up coils. Signals originating from different nuclei are 

usually not observed in the same experiment because their Larmor frequencies are too far apart and the NMR coils are 

sensitive over a limited bandwidth. The operators corresponding to inductive detection in pulsed NMR is non-Hermitian and 435 

therefore yields complex signals.  
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 ZULF High-field 

Main interaction J-coupling 𝐻  Zeeman interaction 𝐻  

Perturbations Zeeman interaction 𝐻  J-coupling 𝐻 , chemical shift 𝐻  

Detection method 
Magnetometry  

(OPM, SQUID, NV, …) 
Faraday induction 

Observables �̂� , + �̂� , = 𝛾 𝐼 + 𝛾 𝑆  𝐼– = 𝐼 – 𝑖𝐼  

Signal type Real Complex 

Table 2: Comparison between high-field and ZULF NMR for typical experiments. Note that quadrature detection (and thus 
imaginary signals) is possible at ZULF, although uncommon. 

3 Results of numerical simulations  

3.1 Excitation schemes on an XA spin system 440 

The ZF and ULF spectra of an XA spin system with a J-coupling of 140 Hz were simulated for different experimental 

sequences, assuming that the sample consists of 100 µL of solution where the spin system has a concentration of 27 mol.L-1. 

Figure 4 shows the experimental sequences, the simulated time domain and frequency domain signals. For all simulations, 

the sample was assumed to have spent sufficient time in a prepolarizing field of 2 T at 298 K to be at Boltzmann’s 

equilibrium. The polarizations of the 13C and 1H spins were calculated using Boltzmann’s distribution (see (19)) and used to 445 

compute the single-spin density matrices of the 13C and 1H spins,  𝜌 ( 𝐶) and 𝜌 ( 𝐻) (see (21)). The density matrix of 

the two-spin system was computed taking the Kronecker product of the single-spin density matrices 𝜌 =

𝜌 ( 𝐶)⨂𝜌 ( 𝐻) (see (23)). The identity was removed from the 2-spin density matrix using (24). The resulting density 

matrix was assumed to represent the initial state of the simulation (as explained above, only the Zeeman terms are considered 

to contribute to the initial state). For each experimental sequence, the spectrum was simulated both at 0 nT (including only 450 

the J-Hamiltonian 𝐻 , see (12)) and with a field of 0.5 μT along the x-axis, that is, orthogonal to both the direction of the 

prepolarizing field and the sensitive axis (including both the J-Hamiltonian 𝐻  and the Zeeman Hamitlonian 𝐻 , see (12) and 

(10)). The time domain signal was computed by propagating the density matrix under the effect of the Hamiltonian for a 

total time of 5 s (parameter taq) discretized into 4096 points (parameter K), corresponding to time intervals 𝑑𝑡 of 1.2207 ms 

(parameter τD). Prior to the propagation loop, the ZF and ULF propagators for this particular time step 𝑈 (see (30)) and the 455 

observable operator 𝑂 (see (40)) were computed only once.  

The density matrix was propagated from time 𝑡  to time 𝑡 = 𝑡 + 𝑑𝑡 under the Hamiltonian (ZF or ULF) using the 

sandwich formula 𝜌 = 𝑈𝜌 𝑈 = 𝑈𝜌 𝑈  (see (29)). At each time point k of the propagation (realized by a for loop), the 
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signal intensity of the time domain signal was extracted from the density matrix using the trace Tr 𝑂𝜌  (see (33)) in pT. In 

theory, the trace of Hermitian operator should be real. However, due to the finite machine precision of the numeric 460 

algorithm, the trace can sometimes contain a non-zero imaginary part. This residual imaginary part is discarded by taking the 

real part of the trace Re Tr 𝑂𝜌 . This point might appear secondary but dealing with complex numbers while thinking 

they are real can lead to important mistakes. After propagation, a monoexponential apodization function was applied to the 

time-domain signal (see (36)), with a coherence time constant 𝑇  of 1 s. A second apodization functions was applied to avoid 

baseline artifacts (see (39)). The apodized time domain signal was Fourier transformed with zero-filling to 65’536 points, 465 

using MATLAB’s built-in functions. The real part of the Fourier transform is shown on Figure 4. The frequency axis of the 

spectra was computed using (39) and (40). The spectra are symmetric around zero and so it is common to work only with the 

positive frequencies as shown in Figure 4. 

Simulating the sudden field drop experiment is the simplest case presented here. Because the coherence excitation scheme 

(or mixing) only consists of bringing the spin from high magnetic field to ZF or ULF, the simulation only consists of 470 

propagating the high-field thermal equilibrium density matrix under the ZF or ULF Hamiltonian. The ZF spectrum consists 

of one line at the J-coupling and one at zero frequency (see Figure 4A). Including a field of 0.5 μT field along the x-axis 

(ULF case) splits the J-peak as well as the line at zero frequency. 

The simulations presented in Fig. 4B-D feature an adiabatic field drop. We used a monoexponential field drop from 𝐵 =

200 μT to 0 occurring over 𝑡 = 0.5 s with a decay time constant of 𝜏 = 0.05 s, described by 475 

𝐵(𝑡) = 𝐵  ,          (42) 

which fulfils the conditions 𝐵(0) = 𝐵  and 𝐵 𝑡 = 0. 

During the field drop, the Hamiltonian 𝐻(𝑡) = 𝐻 + 𝐻 (𝑡) is time-dependent. This step thus cannot be simulated in a single 

propagation step. Instead, it must be discretized in sub-steps 𝑑𝑡  that are sufficiently short for the Hamiltonian to be 

considered time-independent. Here, the 0.5 s time length was discretized into 5000 steps of 0.1 ms. At time 𝑡 = 0, the 480 

density matrix is the thermal equilibrium density matrix 𝜌  obtained above. At each time step 𝑡 , the propagator 𝑈(𝑡 →

𝑡 ) = exp −𝑖𝐻(𝑡 )𝑑𝑡  is computed (see (30)) and the density matrix is propagated from time 𝑡  to time 𝑡 = 𝑡 + 𝑑𝑡 

(see (29)) under the Hamiltonian 𝐻(𝑡 ) = 𝐻 + 𝐻 (𝑡 ). We name 𝜌  the density matrix obtained after this process. A 

question arises here: is this magnetic field drop that we have chosen sufficiently slow to be considered adiabatic? In other 

words, is 𝜌  stationary? A simple way to ensure that it is the case is to simulate the spectrum at ZF after the magnetic field 485 

drop without any excitation pulse, that is, taking 𝜌  as the density matrix at time 𝑡 = 0, 𝜌 . If the transition is adiabatic, 

the system should remain stationary i. e. the time-domain signal should feature no oscillation and the spectrum no peak. 

Figure 4B shows the result of this procedure, which confirms that the transition is adiabatic. The only feature of the ZF 

spectrum in Figure 4B is the line at zero-frequency. This line originates from the non-oscillating magnetization decaying 
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with 𝑇  which is the result of the apodization function that we have applied. Verifying that the spectrum ZF spectrum is flat 490 

also ensures that the field drop was discretized in sufficiently short time intervals 𝑑𝑡. 

Figure 4: Excitation schemes for an XA spin system corresponding to a 13C and 1H spins with a J-coupling of 140 Hz 

and corresponding simulated time domain signals and spectra. The vertical dashed line indicates the J-coupling. The 

time domain signal was computed by propagating the density matrix under the effect of the Hamiltonian for a total 

time of 5 s (parameter taq) discretized in 4096 points (parameter K), corresponding to time intervals dt of 1.2207 ms 

(parameter τD). A monoexponential apodization function was applied to the time domain signal, with a coherence 

time constant 𝑻𝟐 of 1 s. The apodized time domain signal was Fourier transformed with a zero-filling of 65’536 

points. 
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The density matrix after the adiabatic field drop 𝜌
𝑎𝑑𝑖𝑎

 obtained above was used for the simulations presented in Fig. 4C-D. In 

the experimental sequences of Fig. 4C-D, the adiabatic field drop is followed by a magnetic field pulse either along the z- or 

x-axis. This was simulated by propagating 𝜌  under the pulse Hamiltonian to obtain 𝜌 = 𝑈 𝜏 𝜌 𝑈 𝜏 , where 

𝑈 𝜏  is the propagator of the pulse Hamiltonian 𝐻 = 𝐻 + 𝐻 , which acts on the density matrix during pulse length 𝜏 . 495 

The Zeeman Hamiltonian depends on the magnetic field intensity of the pulse 𝐵  and its direction (see (4)). For the z-axis 

pulse, we used a pulse intensity and length of 50 μT and 150 μs, respectively. For the x-axis pulse, we used a pulse intensity 

and length of 50 μT and 910 μs, respectively. These choices are justified in the next section. The resulting density matrices 

𝜌  were used as the density matrix at time 𝑡 = 0 of the time-domain signal, which was computed and Fourier transformed as 

described above. In the case of the z-axis pulse experiment, the peaks of interest (J-peak at 140 Hz) were found to be out of 500 

phase; a phase correction 𝑒  with 𝜙 = 𝜋/2 was thus applied to the Fourier transform. Adjusting the phase for the J-peak 

caused the lower-frequency peaks to be out of phase. Interestingly, in Figure 4D, the intensity of the J-peak is higher than for 

the other excitation schemes while the lower-frequency peaks are suppressed, indicating that all the available polarization 

has been transferred to the J-peak.  

3.2 Nutation experiments 505 

The pairs of magnetic field intensity and length of the pulses used for the simulation in Figure 4D were chosen by simulating 

“nutation curves” both for the z- and x-axis pulses. In high-field NMR, the nutation experiment consists of recording a series 

of NMR detections keeping the RF pulse power constant and varying the pulse length (or the pulse length is kept constant 

and the amplitude is varied(Tayler et al., 2017)). The nutation curve is the plot of the signal intensity as a function of the 

varied parameter. It allows to determine the pair of RF power and pulse length which maximizes the signal intensity. Except 510 

in the presence of rapid relaxation effects or RF field inhomogeneities, the observed nutation curve is sinusoidal. At ZULF, 

the nutation curve is more complex and depends on the spin system under scrutiny. To simulate the nutation experiment at 

ZF, we repeated the simulation of the ZF spectra for an experiment with an adiabatic field drop (using the same parameters 

as above) followed by a pulse of 50 μT along the z- and x-axis, varying the pulse length from 0 to 3000 μs. The time-domain 

signal was Fourier transformed as described above and the frequency-domain signal was integrated from 138 to 142 Hz. The 515 

signal integral of the J-peak is plotted as a function of the pulse length in Figure 5. The signal integral of the sudden drop 

experiment is shown as a horizontal dashed line for comparison. When a pulse along the z-axis is used, a simple sinusoidal 

curve is obtained and its maximum matches that of the sudden drop experiment (see Figure 5A). 

The first maximum is reached for pulse length of 150 μs. When a pulse along x-axis is used, a more complex pattern is 

obtained and the maximum is found to be 1.64 times higher than the sudden drop experiment (see Figure 5B). The first 520 

global maximum is reached for pulse length of 910 μs. 
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3.3 XAn spin system 

The simulations shown up to this point only deal with an XA spin system, which typically corresponds to 13C-formate (or 

13C-formic acid), where the 13C spin interacts with a single 1H through a J-coupling of 195-222 Hz (Blanchard and Budker, 

2016; Tayler et al., 2017) (depending on experimental conditions). 13C,15N-cyanide groups are also interesting two-spin 525 

systems which were used in ZULF experiments (Blanchard et al., 2020, 2015). We now extend the simulation to incorporate 

multiple X spins. An XA2 spin system is for example met in 13C-glycine(Put et al., 2021). XA3 spins are met in a number of 

molecules containing methyl groups such as 13C-pyruvate (Barskiy et al., 2019). XA4 (for example 15N-ammonium 

cation(Barskiy et al., 2019)) and XA5 are less common but they are presented here to show the pattern that arises when 

adding spins.  530 

Figure 6 shows the simulations for sudden drop experiments with detection at ZF and ULF of XAn spin systems with n = 1, 

2, … 5 where X is a 13C spin and An are 1H spins with a J-coupling of 140 Hz between X and A spins and 10 Hz among A 

spins. All the relevant mathematics to construct the operators of a m = n + 1 spin system is given in the Theory Section. For 

an XA5 spin system, the Hilbert space has 26 = 64 dimensions (and related operators). To avoid constructing each operator 

manually, recursive formulae were used (see (13) and (23)). The time-domain signal was computed by propagating the 535 

density matrix under the effect of the Hamiltonian for a total time of 5 s (parameter taq) discretized into 8192 points 

Figure 5: Nutation curves at ZF with excitation pulses along z- and x-axes. The horizontal dashed line represents the signal integral 
of the sudden drop ZF experiment. The time domain signal was computed by propagating the density matrix under the effect of 
the Hamiltonian for a total time of 5 s (parameter taq) discretized in 4096 points (parameter K), corresponding to time intervals dt
of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to the time domain signal, with a coherence 
time constant 𝑻𝟐 of 1 s. The apodized time domain signal was Fourier transformed with a zero-filling of 65’536 points. The 
frequency domain signal was then integrated from 138 to 142 Hz. The nutation curve represents the integral compared with the 
excitation pulse length. pT should be recalculated. 
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(parameter K), corresponding to time intervals dt of 0.6104 ms (parameter τD). A monoexponential apodization function was 

applied to the time domain signal, with a coherence time constant 𝑇  of 1 s. The apodized time domain signal was Fourier 

transformed with a zero-filling of 32’768 points.  

Increasing the number of A spins increases the number of spectral components in the spectrum. A known result of ZULF 540 

NMR appears on this simulation: for odd numbers of n, the ZF spectrum features lines at integer multiples of the J-coupling 

Figure 6: Simulation of ZF and ULF spectra after sudden field drop for XA, XA2, XA3, XA4 and XA5 spin systems with a J-
coupling of 140 Hz between X and A spins and 10 Hz among A spins. The time domain signal was computed by propagating the 
density matrix under the effect of the Hamiltonian for a total time of 5 s (parameter taq) discretized into 4096 points (parameter K), 
corresponding to time intervals dt of 1.2207 ms (parameter τD). A monoexponential apodization function was applied to the time 
domain signal, with a coherence time constant 𝑻𝟐 of 1 s. The apodized time domain signal was Fourier transformed with a zero-
filling of 32’768 points. 
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k*JAX with 𝑘 ∈ ⟦1; (𝑛 + 1)/2⟧ while for even number of n, it features lines at half-integer multiples of the J-coupling 

coupling k*JAX/2 with 𝑘 ∈ ⟦1; 𝑛/2⟧. Adding a 0.5 μT field along the x-axis during detection (that is, performing ULF 

detection) splits the J-lines. The higher the frequency, the greater the number of splittings. Note that the intensity of NMR 

signals at high-field increase upon adding more equivalent spins to the spin system. The analysis of Fig. 6 shows that this 545 

logic does not apply to the J-lines for the ZULF case, where the spectrum completely changes upon changing of spin 

topology. For example, note that the amplitude of the J-line for the XA system has the same intensity as the J-line for the 

XA2 system (appearing at 3/2*JAX frequency). Likewise, the two J-lines for the XA3 system has the same total intensity as 

the two J-lines for the XA4 system. An empirical law of conservation of the total spectral intensity for the J-lines can be 

deduced by looking at Fig. 6: indeed, the total intensity of all J-lines is the same for any XAn system, assuming equal sample 550 

volume, prepolarization, etc. On the other hand, the intensity of low frequency peaks shown in Fig. 6 is proportional to the 

total number of spins in the spin system, like in high-field NMR. This is of course expected as these signals are associated 

with the precession of total magnetization around residual ULF field, and total magnetization is proportional to the number 

of spins.  

4 Interpretation 555 

We are now going to show how to calculate ZULF NMR spectra considering energy levels and transition probabilities rather 

than through the numerical propagation of the density matrix. We will derive analytical solutions for the XAn system in 

particular but the same approach can be used for more complex spin systems. This approach was investigated in references 

(Butler et al., 2013a; Theis et al., 2013; Emondts et al., 2014). Here we aim to present it with more explanations and explicit 

derivations but we limit ourselves to only the simplest spin systems. 560 

The relative contribution of 𝐻𝑧 (see (10)) and 𝐻𝐽 (see (12)) terms depends on the magnetic field strength. In the high-field 

extreme, for a heteronuclear spin system, 𝐻𝑧 is the dominant term and 𝐻𝐽 is considered as a first-order perturbation. In this 

case, heteronuclei are said to be weakly coupled and their eigenstates coincide with the Zeeman states (e. g. those in (9)). At 

zero-field, the weak coupling approximation is not valid, the Zeeman states do not correspond to the eigenstates of system. 

However, it is still possible to calculate analytically the eigenstates for some spin systems, and the simplest case is when all 565 

the spins are identical (An system). In this case, the Hamiltonian is represented by only the 𝐻𝐽 term and it commutes with the 

square of the total angular momentum operator 

𝐹 = 𝐹 + 𝐹 + 𝐹  

𝐹 = ∑ 𝐼 , ;  𝑘 ∈ {𝑥, 𝑦, 𝑧} ,          (43) 

𝐻 , 𝐹 = 𝐻 𝐹 − 𝐹 𝐻 = 0 570 
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where n is the number of spins in the system. It is well known that any pair of commuting Hermitian operators share their 

eigenspaces.(Levitt, 2013) The set of eigenstates which forms an eigenbasis for both operators simultaneously is unique in 

cases where there are no degeneracies (all the eigenvalues for both operators are different). When there are degeneracies, the 

common eignenbasis is not unique. It turns out that 𝐻  and 𝐹  operators have degeneracies, and this results in the existence 

of an infinite number of different shared eigenbases. Let us describe how to find such a set of eigenstates. 575 

4.1 Eigenstates at zero-field 

The eigenstates of a 𝐹  operator can be expressed in terms of the total spin and its projection quantum numbers. The 

conventional way for expressing them is to use the |𝐹, 𝑚 ⟩ notation, where F denotes the total spin and mF denotes the 

projection onto a quantization axis (𝑚 ∈ {−𝐹, −𝐹 + 1, … , 𝐹 − 1, 𝐹 }). For example, by definition, for a single spin 1/2, we 

have the sates |𝛼⟩ ≡ 1
2 , 1

2 ; |𝛽⟩ ≡ 1
2 , − 1

2 . For a pair of spins, we have the three triplet states: |𝑇 ⟩ ≡580 

|1,1⟩; |𝑇 ⟩ ≡ |1,0⟩; |𝑇 ⟩ ≡ |1, −1⟩, and the singlet state |𝑆 ⟩ ≡ |0,0⟩. Any |𝐹, 𝑚 ⟩ state is an eigenstate of the 𝐹  and 𝐹  

operators with the following eigenvalues 

𝐹 |𝐹, 𝑚 ⟩  = 𝐹(𝐹 + 1)|𝐹, 𝑚 ⟩

𝐹 |𝐹, 𝑚 ⟩ = 𝑚 |𝐹, 𝑚 ⟩
 .          (44) 

To find the total spin of a system constituted by n spins, one must sum up the angular momenta of the individual spins, 

which is a common procedure in the field of atomic physics but not so much in NMR. All possible values of the angular 585 

momentum of the interacting spins are added up to constitute a set of uncoupled quasiparticles with different total spin. The 

total spin 𝐹 of a system constituted by two spins 𝐼 and 𝑆 can take the values with steps of 1 between the sum 𝐼 + 𝑆 and the 

absolute value of their difference 

|𝐼 − 𝑆| ≤ 𝐹 ≤ 𝐼 + 𝑆 .           (45) 

For a pair of spins 1/2, the possible values are 𝐹 = 0,1. For n spins, the summation should be proceeded until all the possible 590 

pairs of the angular momentum of the individual spins are summed up. As an illustration, consider a coupled system of 3 

spins ½ (see Figure 7). First, any two spins are added up together to give F = 1 (a triplet) and F = 0 (a singlet). Then, the 

remaining spin-1/2 is added up to the quasiparticles formed in the previous step (spins 1 and 0 in this case). As a result, the 

initial A3 system is decomposed into three subsystems with total spins of F = 3/2, 1/2, (addition of 1 and 1/2) and F =1/2 

(addition of 0 and 1/2).  595 

 

Figure 7: Procedure for adding up the angular momenta for the A3 spin system 
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A useful property of such decomposition can be illustrated at this point: the total spin commutes with all rotation operators 

(e.g. exp (−𝑖𝜃𝐼 )) and therefore 3D rotations will never mix terms of the wavefunction belonging to different total spin, e.g. 600 

spin 3/2 with 1/2. At ZF there is no distinction between directions and therefore the eigenstates must be invariant with 

respect to 3D rotations. This also partially explains the existence of infinite number of eigenbases for 𝐹 , as all different 

orientations of {𝑥, 𝑦, 𝑧} system correspond to different bases. 

One can check that the total number of the spin states remains the same after the procedure of adding up the spins. On the 

one hand, the number of states formed by n coupled spins 𝐼 equals to (2𝐼 + 1) , which is 8 in the considered case. On the 605 

other hand, a manifold with a total spin F has 2𝐹 + 1 different states associated with different possible projections of the 

spin on the quantization axis. Therefore, there are 4 + 2 + 2 states in the considered case. 

The explicit form of the resulting eigenstates can be obtained in terms of “uncoupled” spin states, which are constructed as 

Kronecker product of the individual Zeeman states (see (9)). The resulting state |𝐹, 𝑚 ⟩ of the addition of two angular 

momenta (𝐼 and 𝑆) can be represented as the following linear combination 610 

|𝐹, 𝑚 ⟩ = ∑ 𝐶 , , ,
, |𝐼, 𝑚 , 𝑆, 𝑚 ⟩, ,         (46) 

where 𝐶𝐼,𝑚𝐼,𝐽,𝑚𝐽

𝐹,𝑚𝐹  are called Clebsch-Gordan coefficients and are defined by 

𝐶 , , ,
,

= ⟨𝐼, 𝑚 ;  𝑆, 𝑚 |𝐹, 𝑚 ⟩.          (47) 

Each Clebsch-Gordan coefficient is specified by 6 numbers: the total spin of the coupled state 𝐹, its projection 𝑚  and the 

total spins of the uncoupled states and their projections (𝐼, 𝑆, 𝑚 , 𝑚 ). Coefficient 𝐶 , , ,
,  represents “how much” of 615 

uncoupled state |𝐼, 𝑚 , 𝑆, 𝑚  ⟩ there is in a coupled state |𝐹, 𝑚 ⟩. The analytical values of the Clebsch-Gordan coefficients 

can be calculated using recursive expressions, and are available in many software packages and textbooks. Table 1 in the 

Supplementary Material provides the relation between the coupled and uncoupled states for the considered A3 system and 

shows explicitly how to calculate them. The full set of all possible |𝐹, 𝑚 ⟩ states forms the new basis that is better suited 

than the Zeeman basis for ZULF NMR. In fact, this basis coincides with the eigenstates at ZULF for An and for XAn 620 

systems, but this basis is also a good starting point for more complicated cases. We will refer to this new basis as to 

“coupled” basis because it is appropriate for the description of strongly coupled spins. 

4.2 Eigenenergies at zero-field 

Having the eigenstates, we can now proceed with finding the eigenvalues of the Hamiltonian; these values correspond to the 

energy of the state and therefore determine the frequencies of ZULF NMR transitions. It turns out that An systems are not 625 

detectable at ZULF; it is shown in the next section (where intensities of transitions are calculated) that they give rise to no 

observable transition. At least two types of nuclei with different gyromagnetic ratios are necessary for an observable 
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transition to exist. Therefore, we consider an XAn system from now on. We will denote the operators associated with the X 

spin as 𝑆 and with A spins as �̂�. The Hamiltonian at ZF for this spin system is given by 

𝐻 = 2𝜋𝐽 ∑ 𝐒 ∙ 𝐈 + 2𝜋𝐽 ∑ ∑ 𝐈 ∙ 𝐈 .        (48) 630 

The 𝐻  Hamiltonian can be expressed in terms of the total spin operators using algebraic tricks. We find an expression for 

the first term of (48) in terms of 𝐹 , 𝐼  and 𝑆  by developing 𝐹  

𝐹 = 𝐒 + 𝐈 = 𝑆 + 2𝐒 ∙ 𝐈 + 𝐈 = 𝑆 + 2 𝐒 ∙ 𝐈 + 𝐼  ⇔ 

∑ 𝐒 ∙ 𝐈 = 𝐹 − 𝑆 − 𝐼 .          (49) 

Similarly, we find an expression for the second term of (48) in terms of �̂�
2
 and �̂�𝑎

2
 by developing �̂�

2
 635 

𝐼 = 𝐈 = 𝐼 + 2 𝐈 ∙ 𝐈 ⇔ 

∑ ∑ 𝐈 ∙ 𝐈 = 𝐼 − ∑ 𝐼 .         (50) 

By substituting the results of (49) and (50) into (48), we obtain a form of the Hamiltonian for which the energies will be 

more easily calculated 

𝐻 = 2𝜋𝐽 𝐹 − 𝑆 − 𝐼 + 2𝜋𝐽 𝐼 − ∑ 𝐼 .       (51) 640 

The 𝐻𝐴𝑋 Hamiltonian commutes with the 𝐹
2
 operator, and therefore they share eigenstates |𝐹, 𝑚𝐹⟩. So, the eigenenergies 

can be written as the expectation values of |𝐹, 𝑚𝐹⟩ with respect to 𝐻𝐴𝑋 

𝐸 , = ⟨𝐹, 𝑚 |𝐻 |𝐹, 𝑚 ⟩.          (52) 

To calculate explicitly the eigenvalues, we substitute the Hamiltonian of (51) into (52) and use the following properties 

𝐹 |𝐹, 𝑚 ⟩ = 𝐹(𝐹 + 1)|𝐹, 𝑚 ⟩

𝑆 |𝐹, 𝑚 ⟩ = 𝑆(𝑆 + 1)|𝐹, 𝑚 ⟩

𝐼 |𝐹, 𝑚 ⟩ = 𝐼(𝐼 + 1)|𝐹, 𝑚 ⟩

𝐼 |𝐹, 𝑚 ⟩ = 𝐼 (𝐼 + 1)|𝐹, 𝑚 ⟩

,          (53) 645 

to obtain the final expression for the energy of level |𝐹, 𝑚 ⟩ 
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𝐸 , =  [𝐹(𝐹 + 1) − 𝑆(𝑆 + 1) − 𝐼(𝐼 + 1)] +  [𝐼(𝐼 + 1) − 𝑛𝐼 (𝐼 + 1)],    (54) 

expressed in Hz. Here, quantum number 𝐹 corresponds to the total spin of the full XAn system, 𝑆 corresponds to the spin of 650 

the nucleus X, 𝐼 is the total spin of the An spins, and 𝐼  is the spin of individual nuclei A. 

The spin 𝑆 is the same for all eigenstates (e.g. it is ½ for 13C); similarly, all spins Ia are the same and for 1H spins they are 

equal to ½. The remaining two quantum numbers F and S can have different values depending on the state, therefore 

removing degeneracy between some of the levels. Figure 8 presents the energy levels of XA, XA2, and XA3 systems at ZF 

calculated using (54). 655 

 

 

Figure 8: Energy levels for XA, XA2, and XA3 spin systems calculated according to (54). The numbers above the energy levels 
represent the z-projection of the angular momentum of the states mF. Allowed transitions are shown by green arrows. JAX was set 
to 140 Hz and JAA was set to -12 Hz, these are typical values for 1JCH and 2JHH J-couplings. The energy difference for the allowed 660 
transitions equals to JAX for the XA system, 3/2JAX for the XA2 system, and two frequencies of 2JAX and of JAX for the XA3 system. 
This agrees with the numerical simulations shown in Figure 6. 

4.3 Selection rules 

We have now found the eigenstates and their energies but not all transitions between any pair of states are allowed. The last 

step is to find the transition intensities and thus get the analytical appearance for the ZF NMR spectrum of an XAn system. 665 

There are certain selection rules specifying which transitions are in principle possible and which are forbidden, like those in 

high-field NMR, where only single quantum transitions are allowed. A general expression for the transition intensity 

between any two eigenstates |𝐹, 𝑚 ⟩ and |𝐹′, 𝑚′ ⟩ is given by 

𝑌 =  ⟨𝐹′, 𝑚′ |𝜌 |𝐹, 𝑚 ⟩ 𝐹′, 𝑚′ 𝑂 𝐹, 𝑚 .         (55) 

We will explicitly calculate the transition intensity for the sudden field drop experiment. In this case, both the initial state 𝜌  670 

and the observation operator 𝑂 are proportional to 𝛾 𝐼 + 𝛾 𝑆 . Therefore, the transition intensity becomes 

𝑌 =  𝐹′, 𝑚′ 𝛾 𝐼 + 𝛾 𝑆 𝐹, 𝑚 .          (56) 
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This expression is an example of Fermi’s golden rule that is used to calculate transition’s amplitude in different problems on 

quantum mechanics. Similar expression can be found for the high-field NMR. By expressing the coupled states |𝐹, 𝑚 ⟩ in 

terms of uncoupled basis (see (46)) we find that 675 

𝛾 𝐼 + 𝛾 𝑆 |𝐹, 𝑚 ⟩ = 𝛾 𝐼 + 𝛾 𝑆 𝐶 , , ,
, |𝐼, 𝑚 , 𝑆, 𝑚 ⟩

,

 

= ∑ 𝐶 , , ,
, (𝛾 𝑚 + 𝛾  𝑚 )|𝐼, 𝑚 , 𝑆, 𝑚 ⟩, ,        (57) 

where mI and mS are the z-projection of spin I and S, respectively. Now let us express the remaining ⟨𝐹′, 𝑚′ | state in terms 

of uncoupled basis as well and combine (56) and (57) 

𝑌 = 𝐶
, , ,

, ⟨𝐼 , 𝑚 , 𝑆 , 𝑚 |

,

𝐶 , , ,
,

 (𝛾 𝑚 + 𝛾  𝑚 ) |𝐼, 𝑚 , 𝑆, 𝑚  ⟩

,

 680 

=  ∑ 𝐶
𝐼′,𝑚′

𝐼,𝑆′,𝑚′𝑆

𝐹′,𝑚′𝐹 𝐶𝐼,𝑚𝐼,𝑆,𝑚𝑆

𝐹,𝑚𝐹  𝛾𝐼𝑚𝐼 + 𝛾𝑆 𝑚𝑆 𝐼′, 𝑚′
𝐼, 𝑆′, 𝑚′𝑆 𝐼, 𝑚𝐼, 𝑆, 𝑚𝑆𝑚′𝐼,𝑚′𝑆,𝑚𝐼,𝑚𝑆

2
   (58) 

The last term 𝐼′, 𝑚′
𝐼, 𝑆′, 𝑚′𝑆 𝐼, 𝑚𝐼, 𝑆, 𝑚𝑆  is nonzero only if 

𝛥𝐼 = 𝐼 − 𝐼 = 0
𝛥𝑚 = 𝑚 − 𝑚 = 0

𝛥𝑆 = 𝑆 − 𝑆 = 0
𝛥𝑚 = 𝑚 − 𝑚 = 0

.           (59) 

These selection rules mean that the only allowed transition are those which conserve the total spins I and S, as well as their 

projections onto the reference axis. (68) therefore simplifies to 685 

𝑌 = ∑ 𝐶 , , ,
,

𝐶 , , ,
, (𝛾 𝑚 + 𝛾  𝑚 ), .        (60) 

It is important to notice that, in case where 𝛾 = 𝛾 , each element of this sum becomes antisymmetric with respect to change 

of the sign of the projections 𝑚 ∈ {−𝐼, −𝐼 + 1, … , 𝐼 + 1, 𝐼} and 𝑚 ∈ {−𝑆, −𝑆 + 1, … , 𝑆 + 1, 𝑆} 

𝐶 , , ,
,

𝐶 , , ,
,

2 𝛾 𝑚 = −𝐶 , , ,
,

𝐶 , , ,
,

2 𝛾(−𝑚 ).       (61) 

This antisymmetry leads to the fact that, for 𝛾 = 𝛾 = 𝛾 , the intensities of all possible transitions are always zero, which 690 

explains why ZULF NMR J-spectroscopy requires having at least two types of nuclei.  

Finally, there are two more selection rules that are derived by implementing Wigner–Eckart theorem. The considered case is 

equivalent to “dipole” transition, where the transition is observed between two states connected by operator of rank 1 (e.g. 

(56)). This is a common situation in atomic physics, and we adapt this result without evaluation: the reduced matrix element 

coming from Wigner–Eckart is shown to be non-zero if and only if 695 
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𝛥𝐹 = ±1
𝛥𝑚 = 0

.            (62) 

The whole set of selection rules given by (59) and (62) allows us to find which transitions are observable in XAn systems at 

ZF. These transitions are shown in Figure 8 by the green arrows. It can be seen that JAA-couplings shift the energy levels but 

do not affect the frequencies of the observable transitions. This is a common situation that J-couplings between magnetically 

equivalent spins do not contribute to the observed NMR spectrum. As can be seen from the analysis presented above, this 700 

statement holds for each case of the ZF NMR spectra of XAn systems. 

In this section, we found analytically the allowed transitions for XA, XA2 and XA3 for the case of sudden field drop to ZF. 

The XA spin system has a single transition at JAX; The XA2 spin system has a single transition at 3/2 JAX; and the XA3 spin 

system has one allowed transition at JAX and another one at 2 JAX. Allowed transitions found analytically here correspond to 

the numerical simulation: XA single line at JAX, XA2 single line at 3/2 JAX, etc.. This derivation explained the appearance of 705 

the ZF spectra but not that of the ultralow-field spectra. To understand how the degeneracy of the ZF eigenstates are split by 

the presence of a bias field, one has to use perturbation theory. We refer the interested reader to Refs (Ledbetter et al., 2011; 

Appelt et al., 2010).  

5 Conclusion 

We have shown how to numerically simulate spectra at both zero- and ultra-low fields for sudden drop and pulsed 710 

experiments. We have then explained the results of the numerical simulation for sudden drop experiments at ZF by 

constructing the eigenbasis of the ZF Hamiltonian and finding the allowed transitions among the eigenstates. The other 

numerically simulated cases (i.e. pulsed experiments) can be explained using the analytical approach that we have presented 

here. It requires an additional step which is to describe how a pulse converts the populations of states. The reader who is 

acquainted with the product operator formalism commonly used in high-field NMR might be interested in an alternative 715 

approach based of commutation rules as presented in Refs (Blanchard and Budker, 2016; Butler et al., 2013b). We have 

chosen to describe the simplest case, i. e., experiments with thermal prepolarization. The formalism we presented here is a 

good starting point for the description and understanding of hyperpolarized ZULF experiments. It can also be used to 

simulate the transition between the ZULF and high-field regime (Bodenstedt et al., 2021). We hope that this Tutorial Paper 

has allowed us to share our excitement with the reader. 720 

Code availability 

The codes used to simulate the spectra presented in this Paper are available online (https://doi.org/10.5281/zenodo.7271319). 

PDF versions of the codes are available as Supplementary Material to the Paper. 
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